F. Lygerakis, V.Dave, E. Rueckert, M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation, 2024, 21st International Conference on Ubiquitous Robots (UR2024). [Best Student Paper Award]
V.Dave*, F. Lygerakis*, E. Rueckert (*Equal Contribution), Multimodal Visual-Tactile Representation Learning through Self-Supervised Contrastive Pre-Training, IEEE International Conference on Robotics and Automation (ICRA), 2024
F. Lygerakis, E. Rueckert, CR-VAE: Contrastive Regularization on Variational Autoencoders for Preventing Posterior Collapse, 7th Asian Conference on Artificial Intelligence (ACAIT), 2023
F. Lygerakis, M. Dagioglou, V. Karkaletsis, Accelerating Human-Agent Collaborative Reinforcement Learning, PETRA 21, 2021
F. Lygerakis, A. C. Tsitos, M. Dagioglou, F. Makedon, V. Karkaletsis “Evaluation of 3D markerless pose estimation accuracy using OpenPose and depth information from a single RGB-D camera,” PETRA 20
F. Lygerakis, V. Diakoloulas, M. Lagoudakis, M. Kotti, "Robust Belief State Space Representation for Statistical Dialogue Managers Using Deep Autoencoders," 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Singapore, 2019
M. Kyrarini, F. Lygerakis, A. Rajavenkatanarayanan, C. Sevastopoulos, H. R. Nambiappan, K. K. Chaitanya, A. R. Babu, J. Mathew, F. Makedon, A Survey of Robots in Healthcare. Technologies 2021, 9, 8.
V. Diakoloukas, F. Lygerakis, M. G. Lagoudakis, M. Kotti, “Variational Denoising Autoencoders and Least-Squares Policy Iteration for Statistical Dialogue Managers,” in IEEE Signal Processing Letters